Chaos Suppression via Integrative Time Delay Control

Author:

Arafa Ayman A.12ORCID,Xu Yong1,Mahmoud Gamal M.3

Affiliation:

1. Department of Applied Mathematics, Northwestern Polytechnical University, Xi’an 710072, P. R. China

2. Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt

3. Department of Mathematics, Faculty of Science, Assiut University, Assiut 71516, Egypt

Abstract

A general strategy for suppressing chaos in chaotic Burke–Shaw system using integrative time delay (ITD) control is proposed, as an example. The idea of ITD is that the feedback is integrated over a time interval. Physically, the chaotic system responds to the average information it receives from the feedback. The main feature of integrative is that the stability of the chaotic system occurs over a wider range of the space parameters. Controlling chaotic systems with ITD has not been discussed before as far as we know. Stability and the existence of Hopf bifurcation are studied which demonstrate that the switch stability occurs at critical values of the time delay. Employing the normal form theory and center manifold argument, an explicit formula is derived to determine the stability and the direction of the bifurcating periodic solutions. Numerically, the bifurcation diagram and the eigenvalues of the corresponding characteristic equations are computed to supply a clear interpretation for suppressing chaos via ITD. Furthermore, ITD method is compared with the time delayed feedback (TDF) control numerically. This comparison shows that the stability area with ITD is larger than TDF which demonstrates the feasibility and effectiveness of the ITD. Other examples of chaotic systems can be similarly investigated.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Modelling and Simulation,Engineering (miscellaneous)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3