End-to-End Deep Policy Feedback-Based Reinforcement Learning Method for Quantization in DNNs

Author:

Logesh Babu R.1,Gurumoorthy Sasikumar2,Parameshachari B. D.3,Christalin Nelson S.4,Hua Qiaozhi5ORCID

Affiliation:

1. Department of Computer Science and Engineering, Madanapalle Institute of Technology & Science, Madanapalle, Chittoor 517325, Andhra Pradesh, India

2. Department of Computer Science and Engineering, Jerusalem College of Engineering, Chennai 600100, Tamil Nadu, India

3. Department of Telecommunication Engineering, GSSS Institute of Engineering and Technology for Women, Mysuru 570011, Karnataka, India

4. Department of Systemics Cluster, School of Computer Science, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India

5. School of Computer, Hubei University of Arts and Science, Xiangyang, Hubei 441000, P. R. China

Abstract

In the resource-constrained embedded systems, the designing of efficient deep neural networks is a challenging process, due to diversity in the artificial intelligence applications. The quantization in deep neural networks superiorly diminishes the storage and computational time by reducing the bit-width of networks encoding. In order to highlight the problem of accuracy loss, the quantization levels are automatically discovered using Policy Feedback-based Reinforcement Learning Method (PF-RELEQ). In this paper, the Proximal Policy Optimization with Policy Feedback (PPO-PF) technique is proposed to determine the best design decisions by choosing the optimum hyper-parameters. In order to enhance the sensitivity of the value function to the change of policy and to improve the accuracy of value estimation at the early learning stage, a policy update method is devised based on the clipped discount factor. In addition, specifically the loss functions of policy satisfy the unbiased estimation of the trust region. The proposed PF-RELEQ effectively balances quality and speed compared to other deep learning methods like ResNet-1202, ResNet-32, ResNet-110, GoogLeNet and AlexNet. The experimental analysis showed that PF-RELEQ achieved 20% computational work-load reduction compared to the existing deep learning methods on ImageNet, CIFAR-10, CIFAR-100 and tomato leaf disease datasets and achieved approximately 2% of improvisation in the validation accuracy. Additionally, the PF-RELEQ needs only 0.55 Graphics Processing Unit on an NVIDIA GTX-1080Ti to develop DNNs that delivers better accuracy improvement with fewer cycle counts for image classification.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3