CNTFET Circuit-Based Wide Fan-In Domino Logic for Low Power Applications

Author:

Sharma Vijay Kumar1ORCID

Affiliation:

1. School of Electronics & Communication Engineering, Shri Mata Vaishno Devi University, Katra 182320, India

Abstract

Carbon nanotube field effect transistors (CNTFETs) are the best alternative option for the metal oxide semiconductor field effect transistor (MOSFET) in the ultra-deep submicron (ultra-DSM) regime. CNTFET has numerous benefits such as lower off-state current, high current density, low bias potential and better transport property as compared to MOSFET. A rolled graphene sheet-based cylindrical tube is constructed in the channel region of the CNTFET structure. In this paper, an improved domino logic (IDL) configuration is proposed for domino logic circuits to improve the different performance metrics. An extensive comparative simulation analysis is provided for the different performance metrics for different circuits to verify the novelty of the proposed IDL approach. The IDL approach saves the leakage power dissipation by 95.61% and enhances the speed by 87.10% for the 4-bit full adder circuit as compared to the best reported available domino method. The effects of the number of carbon nanotubes (CNTs), temperature, and power supply voltage variations are estimated for leakage power dissipation for the 16-input OR (OR16) gate. The reliability of different performance metrics for different circuit is calculated in terms of uncertainty by running the Monte Carlo simulations for 500 samples. Stanford University’s 32[Formula: see text]nm CNTFET model is applied for circuit simulations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ultra-optimized demultiplexer unit design in quantum-dot cellular automata nanotechnology;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-03

2. Fault-tolerant universal reversible gate design in QCA nanotechnology;e-Prime - Advances in Electrical Engineering, Electronics and Energy;2024-03

3. Realized High-Performance Swing Compensator Approximate Reversible Full Adders Using Gate Diffusion Input Technique;Arabian Journal for Science and Engineering;2024-01-24

4. Reliable and ultra-low power approach for designing of logic circuits;Analog Integrated Circuits and Signal Processing;2023-12-11

5. Domino index: A rapid quantification tool for the domino effect in chemical plants;Heliyon;2023-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3