A Novel Feasibility Test for Energy Minimization of Real-Time Mixed Task Sets for DVS-Enabled Uniprocessor System

Author:

Manohara H. T.1,Harish B. P.2

Affiliation:

1. Department of Electrical Engineering, University Visvesvaraya College of Engineering, Bangalore University, Bangalore, India

2. Department of Electronics and Communication Engineering, University Visvesvaraya College of Engineering,Bangalore University, Bangalore, India

Abstract

With advancements in computing and communication technologies on mobile devices, the performance requirements of embedded processors have significantly increased, resulting in a corresponding increase in its energy consumption. Dynamic scaling of operating voltage and operating frequency has a strong correlation to energy minimization in CMOS real-time circuits. Simultaneous optimization of ([Formula: see text], [Formula: see text] pairs under dynamic activity levels is thus extensively investigated over several years. The supply voltage is tuned dynamically during runtime (DVS), with a fixed threshold voltage, to achieve energy minimization. This work addresses the issue of maximizing the energy efficiency of real-time periodic, aperiodic and mixed task sets, in a uniprocessor system, by developing a novel task feasibility methodology, with a novel processor performance-based constraint, to generate the optimal operating supply voltage to the individual task of task sets. The energy minimization of real-time mixed task sets is formulated as Geometric Programming (GP) problem, by varying frequency for periodic tasks sets and keeping fixed frequency for aperiodic tasks set, over a range of task sets and hence computing optimal operating voltages. Simulation experiments show energy savings on the cumulative basis of 50%, 38% and 29% for periodic, aperiodic and mixed task sets, respectively, based on the processing timing constraints of task sets.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modified DBW to Achieve Stable PM in CLBC for DVS Competent Real-time Periodic System;2022 IEEE 2nd Mysore Sub Section International Conference (MysuruCon);2022-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3