Affiliation:
1. VLSI Design Laboratory, Electrical and Computer Engineering Department, University of Patras, Patras, Greece
Abstract
In this paper, we present two alternative architectures and FPGA implementations of the 64-bit NESSIE proposal, MISTY1 block cipher. The first architecture is suitable for applications with high-performance requirements. A throughput of up to 12.6 Gbps can be achieved at a clock frequency of 168 MHz. The main characteristic of this architecture is that uses RAM blocks embedded in modern FPGA devices in order to implement the S-boxes defined in the block cipher algorithm. The second architecture can be used in implementing applications on area-constrained systems. It utilizes feedback logic and inner pipeline with negative edge-triggered register. This technique shortens the critical path, without increasing the latency of the MISTY1 algorithm execution. Compared with an implementation without inner pipeline, performance improvement of 97% is achieved. The measured throughput of the second architecture implementation is 561 Mbps at 79 MHz.
Publisher
World Scientific Pub Co Pte Lt
Subject
Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献