SPV-Based UPQC with Modified Power Angle Control Scheme for the Enhancement of Power Quality

Author:

Gowrishankar A.1,Ramasamy M.2

Affiliation:

1. Department of Electrical and Electronics Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamilnadu, India

2. Department of Electrical and Electronics Engineering, K. S. R. College of Engineering, Tiruchengode 637215, Tamilnadu, India

Abstract

Unified Power Quality Conditioner (UPQC) with a modified Power Angle Control (PAC) scheme is presented for effective interconnection of renewable energy system into the grid. The UPQC consists of both shunt and series Active Power Filters (APFs). The shunt and series APF is one of the most effective custom power devices, which provides compensation for current and voltage-based disturbances, respectively. The shunt APF supplies active power to the load from the Distributed Generation (DG) in addition to reactive power demand supplied by it. Because of this functionality, the Volt–Ampere (VA) burden increases along with the rating of the shunt inverter. The PAC scheme aims to effective utilization of series and shunt APFs through sharing of reactive power to reduce VA burden on shunt APF. The PAC scheme is based on Synchronous Reference Frame (SRF) theory, which has simple computations, is robust and uses existing measurements of Solar Photovoltaic (SPV)-integrated UPQC. The performance of the proposed SPV-integrated UPQC is verified with the manifestation of nonlinear loads and reactive burdens with the SPV power generating system. The dynamic performance of the PV-UPQC is verified under the grid disturbances such as voltage sag, swell, varying load and change in solar irradiation. The effectiveness of the proposed control scheme is evaluated through the digital simulation and hardware experimental prototype model.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3