Runtime Memory Controller Profiling with Performance Analysis for DRAM Memory Controllers

Author:

Jeon Dong-Ik1ORCID,Lee Min-Kyu1,Kim Ji-Chan1,Chung Ki-Seok1ORCID

Affiliation:

1. Department of Electronic and Computer Engineering, Hanyang University, Seoul 04763, Republic of Korea

Abstract

The main memory system has become crucial not only because it has to meet an increasing bandwidth requirement, but also because it has to seamlessly support many concurrently executing applications. In order to improve memory performance, a memory controller with efficient arbitration is necessary. It is well known that memory performance is dependent on the memory access patterns. The offline performance analysis has difficulty analyzing the Dynamic Random Access Memory (DRAM) performance accurately because a huge set of trace patterns is needed. This paper proposes a novel profiler that is synthesized with a memory controller in order to monitor and analyze the memory controller performance at runtime. In this paper, five key metrics for performance evaluation are defined and they are monitored and evaluated at runtime by the proposed profiler. A prototype system with a processor core, a memory controller, DRAM modules, and peripheral devices are implemented on a field-programmable gate array (FPGA) board to carry out the experiments. It has been observed that the worst latency overhead differs for each benchmark. In addition, a new overall overhead estimation method is proposed to estimate the memory access latency overhead in time, and this method can be used to evaluate the performance of a certain memory arbitration method depending on running applications.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. MBIST Controller Based on March-ee Algorithm;Journal of Circuits, Systems and Computers;2020-12-28

2. A High-Throughput Hardware Accelerator for Lossless Compression of a DDR4 Command Trace;IEEE Transactions on Very Large Scale Integration (VLSI) Systems;2019-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3