Design Methodologies for Reversible Logic Based Barrel Shifters

Author:

Kotiyal Saurabh1,Thapliyal Himanshu2

Affiliation:

1. Department of Computer Science and Engineering, University of South Florida, Tampa, FL 33620, USA

2. Department of Electrical and Computer Engineering, University of Kentucky, Lexington, KY 40506, USA

Abstract

Barrel shifter is an integral component of processor datapaths in computing systems since it can shift and rotate multiple bits in a single cycle. Furthermore, reversible logic has applications in emerging computing paradigms such as quantum computing, quantum dot cellular automata, optical computing, etc. In this work, we propose efficient methodologies for designing reversible barrel shifters. The proposed methodologies are designed using Fredkin gate and Feynman gate (FG). The Fredkin gate is used because it can implement a 2:1 MUX with minimum quantum cost, minimum number of ancilla inputs and garbage outputs, and the Feynman gate is used to avoid a fanout since a fanout is not allowed in reversible logic. In the existing literature, design methodologies are limited to the design of a ([Formula: see text]) reversible left rotator that can only perform the left rotate operation. This work explores the other primary functionalities of a reversible barrel shifter such as the design of a reversible: (i) logical right shifter, (ii) universal right shifter that supports logical right shifter, arithmetic right shifter and right rotate operation, (iii) bidirectional logical shifter and (iv) universal bidirectional shifter that supports bidirectional logical and arithmetic shifter and rotate operations. The other types of reversible barrel shifters can also be easily designed by making minor modifications in the proposed methodologies. The proposed design methodologies are generic in nature and can be implemented using any barrel shifter of ([Formula: see text]) size, where n and k are the number of data bits and shift value, respectively. In order to minimize the number of ancilla inputs and garbage outputs, strategies such as the implementation of an n number of 2:1 MUXes as a chain of n Fredkin gates and the mapping of the two different 2:1 MUXes that are controlled by a common control signal but having the swapped controlled signals on a single Fredkin gate, are utilized. The design methodologies are evaluated in terms of the number of garbage outputs, the number of ancilla inputs and quantum cost. For a ([Formula: see text]) reversible barrel shifter, the relations between the varying values of n and k and their impact on the number of garbage outputs, the number of ancilla inputs and quantum cost are also established to help the designers in choosing an efficient barrel shifter according to their design needs.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3