ADAPTIVE ENERGY MANAGEMENT SYSTEM BASED ON LOW-POWER MICROCONTROLLER WITH ENERGY HARVESTING AT MAXIMUM POWER

Author:

HEO SEWAN1,YANG YIL SUK1,LEE SANG-KYUN1,KWON JONG-KEE1

Affiliation:

1. NT Convergence Components Research Department, Electronics and Telecommunications Research Institute, Daejeon, Korea

Abstract

This paper describes an energy management system and an algorithm for an energy-aware operation. The system obtains energy from an energy harvester and manages the energy adaptively according to the monitored energy status. Based on a low-power microcontroller, the system controls the energy harvester so that it always harvests energy at maximum power and tracks it when the operating condition changes. It also controls the power consumption of all parts of the system so that they are adjusted dynamically for the management of harvested or stored energy. To manage the energy transfer to a battery, a DC–DC converter, called the energy management IC, is optimized for the operating voltage control of the harvester. In an experiment using an energy harvester and a battery modified for the system, the energy management IC fabricated in a 0.18 μm process maximizes the energy transfer power with a simple, low-power algorithm. The proposed system is verified to be more efficient for low-energy harvesting by the adaptive energy and power management.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Constant Power Management Controller for Hybrid PV-Battery System;Journal of Circuits, Systems and Computers;2019-09-30

2. A Review of Start-Up Circuits for Low Voltage Self-Powered DC-Type Energy Harvesters;Journal of Circuits, Systems and Computers;2016-04-22

3. Photovoltaic Systems with Passive Lossless Cuk Converter Using Hybrid Sliding Mode Control;Journal of Circuits, Systems and Computers;2016-02-25

4. A Wide-Range Charge Controller for Solar Sensor;Journal of Circuits, Systems and Computers;2015-06-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3