Merging and Prioritizing Optimization in Block I/O Scheduling of Disk Storage

Author:

Li Hui1,Liao Jianwei1,Liu Xiaoyan2

Affiliation:

1. College of Computer and Information Science, Southwest University, Chongqing 400715, P. R. China

2. Department of Educational Administration, Southwest University, Chongqing 400715, P. R. China

Abstract

I/O merging optimization at the block I/O layer of disk storage is widely adopted to reduce I/O response time. But it may result in certain overhead of merging judgment in the case of a large number of concurrent I/O requests accessing disk storage, and place negative effects on the response of small requests. This paper proposes a divide and conquer scheduling scheme at the block layer of I/O stack, to satisfy a large number of concurrent I/O requests with less I/O response time and ensure the fairness of each request response by decreasing the average I/O latency. First, we propose a horizontal visibility graph-based approach to cluster relevant block requests, according to their offsets (i.e., logic block numbers). Next, it carries out the optimization operation of merging consecutive block I/O requests within each cluster, as only these requests in the same cluster are most likely to be issued by a specific application. Then, we have introduced the functionality of merging judgment when performing merging optimization to effectively guarantee the average I/O response time. After that, the merged requests in the queue will be reordered on the basis of their priorities, to purposely cut down the average I/O response time. Finally, the prioritized requests are supposed to be delivered to the disk storage, for being serviced. Through a series of experiments, we show that compared to the benchmark, the newly proposed scheme can not only cut down the I/O response time by more than 18.2%, but also decrease the average I/O response time up to 71.7%.

Funder

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Reference39 articles.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3