Analysis, Design and Fabrication of a Square Slot Loaded (SSL) Millimeter-Wave Patch Antenna Array for 5G Applications

Author:

Aghoutane Bilal1,Das Sudipta2,El Faylali Hanan1,Madhav B. T. P.3,El Ghzaoui Mohammed4ORCID,El Alami Ali5

Affiliation:

1. ISO Laboratory, Department of Computer Science, Ibn Tofail University, Kenitra, Morocco

2. Department of ECE, IMPS College of Engineering and Technology, WB, India

3. Department of ECE, Koneru Lakshmaiah Education Foundation, AP, India

4. Systems Networks and Telecommunications Team, IMAGE Laboratory, ENS-Moulay Ismail University of Meknes, Morocco

5. Electronics, Instrumentation and Physical Measurements, Moulay Ismail University, Morocco

Abstract

A new compact [Formula: see text] microstrip patch antenna array design for future 5G applications is presented in this paper. The proposed antenna array consists of square slot loaded with four radiating patch elements. The corporate feed network has been implemented for the excitation of the array. The feed line is connected to the square slot patch through a quarter-wave transformer matching network. The proposed array is designed on an FR-4 substrate with a dielectric constant of 4.4, thickness of 1.6[Formula: see text]mm and loss tangent (tan[Formula: see text] of 0.02. It has a compact dimension of 9.590[Formula: see text] 17.802[Formula: see text]. The proposed structure has been designed and simulated by using commercially available HFSS software. The simulated results (reflection coefficient, gain, efficiency, radiation pattern) are verified through the measurement process to confirm the validity of the design concept. The measurement results are in good agreement with the simulated results. The proposed structure resonates at 38.1[Formula: see text]GHz with a [Formula: see text]10[Formula: see text]dB impedance bandwidth of about 3700[Formula: see text]MHz (36.5[Formula: see text]GHz to 40.2[Formula: see text]GHz). The reflection coefficient at 38.1[Formula: see text]GHz is [Formula: see text]34[Formula: see text]dB, with a maximum gain of 7.81[Formula: see text]dB. The proposed square slot loaded patch antenna array is very promising for 5G communications at 38[Formula: see text]GHz band (37–40[Formula: see text]GHz).

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3