Design Approaches of Ultra-Low Power SAR ADC for Biomedical Systems — A Review

Author:

Aneesh K.1ORCID,Manoj G.1,Shylu Sam S.1

Affiliation:

1. Department of ECE, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India

Abstract

In recent years, implantable biomedical devices like cardiac pacemaker, defibrillators, cochlear implants, visual prosthesis etc. have gained immense importance in the personal health monitoring system. Most of these devices are battery powered. The life span of a pacemaker is expected to be between 10 and 12 years. This shows the importance of having an ultra-low power design technique to improve the reliability and battery life of the system. To achieve this, power draws from the battery must be kept low. Analog-to-Digital Convertor (ADC) is a main block in the front-end sensing unit of an implant for measurements of various biophysiological signals. This is the most power consuming unit in the system. ADC alone consumes about 30%–35% of the total power. This work surveys various successive approximation ADC designs for biomedical signal acquisition, in terms of power consumption, signal to noise distortion ratio, sampling rate, resolution and Figure of Merit. The different switching schemes for capacitive DAC are also surveyed.

Funder

Ministry of Electronics and Information technology

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3