Direct Arrhythmia Classification from Compressive ECG Signals in Wearable Health Monitoring System

Author:

Hua Jing12,Zhang Hua1,Liu Jizhong1,Xu Yilu12,Guo Fumin1

Affiliation:

1. School of Mechatronics Engineering, Nanchang University, Nanchang 330031, P. R. China

2. School of Software, Jiangxi Agricultural University, Nanchang 330045, P. R. China

Abstract

Due to the capacity of processing signal with low energy consumption, compressive sensing (CS) has been widely used in wearable health monitoring system for arrhythmia classification of electrocardiogram (ECG) signals. However, most existing works focus on compressive sensing reconstruction, in other words, the ECG signals must be reconstructed before use. Hence, these methods have high computational complexity. In this paper, the authors propose a cardiac arrhythmia classification scheme that performs classification task directly in the compressed domain, skipping the reconstruction stage. The proposed scheme first employs the Pan–Tompkins algorithm to preprocess the ECG signals, including denoising and QRS detection, and then compresses the ECG signals by CS to obtain the compressive measurements. The features are extracted directly from these measurements based on principal component analysis (PCA), and are used to classify the ECG signals into different types by the proposed semi-supervised learning algorithm based on support vector machine (SVM). Extensive simulations have been performed to validate the effectiveness of the proposed scheme. Experimental results have shown that the proposed scheme achieves an average accuracy of [Formula: see text] at a sensing rate of 0.7, compared to an accuracy of [Formula: see text] for noncompressive ECG data.

Funder

Science & Technology Research Project of Jiangxi Province

National Natural Science Foundation of China

College Science & Technology Ground Plan Project of Jiangxi Province

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3