Design and Implementation of a Dual-Band Rectifier Antenna for Efficient RF Energy Harvesting in Wireless Sensor Networks

Author:

Rajawat Asmita1ORCID,Singhal P. K.1

Affiliation:

1. Electronics & Communication Department, MITS Gwalior, Gwalior, M.P., India

Abstract

Wireless sensor networks (WSN) have observed an exponential amount of growth in the recent past. The energy associated with the sensor nodes is limited which is a major bottleneck for the WSN technologies. The sensor nodes in WSN need to be continuously charged and thus an efficient RF energy harvesting needs to be explored. In the proposed design, a dual-band rectifier antenna for RF energy harvesting has been developed for 900 MHz and 2.45 GHz frequencies as RF energy is mainly available in the range of 900 MHz–2.45 GHz. The antenna proposed is microstrip U slot antenna with S11 parameter below −10 dB at 2.45 GHz and 0.8 GHz with a gain of 5.1 dBi and 10.1 dBi at 900 MHz and 2.45 GHz, respectively. The circuit for the rectifier uses Schottky Diode HSMS-285C for the purpose of rectification. The rectifier circuit used is a Greinacher Voltage Multiplier. Impedance Matching of the rectifier has been processed out to improve the performance of the circuit. Simulations of rectifier have been done on Advanced Design System (ADS) Software. The conversion efficiency at 900 MHz and 2.45 GHz is found to be 78.7% and 51.768%, respectively. The proposed design can find its uses in large number of energy harvesting applications under wireless power transmission such as powering of Wireless Sensor Nodes.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Novel Switching-Type Capacitor Charger with Operation at the CCM/DCM Boundary for Energy Harnessing Applications;Journal of Circuits, Systems and Computers;2024-09-12

2. Novel two-dimensional radio frequency energy harvesting system: Design and implementation;AIP Advances;2024-06-01

3. Design and Performance Evaluation of RF Energy Harvester for Wearable Sensor Nodes;2024 IEEE Wireless Antenna and Microwave Symposium (WAMS);2024-02-29

4. Design and Optimization of a 2.4 GHz Antenna Array for Energy Harvesting;European Journal of Theoretical and Applied Sciences;2023-11-01

5. Design of RF energy harvester for 700 MHz;Journal of Electrical Engineering;2023-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3