A Metaheuristic Optimization Approach for Tuning of Fractional-Order PID Controller for Speed Control of Sensorless BLDC Motor

Author:

Vanchinathan K.1ORCID,Valluvan K. R.2

Affiliation:

1. Department of Electrical and Electronics Engineering, Velalar College of Engineering and Technology, Erode 638012, Tamilnadu, India

2. Department of Electronics and Communication Engineering, Velalar College of Engineering and Technology, Erode 638012, Tamilnadu, India

Abstract

This paper deals with a novel method for Bat Algorithm (BA) based on optimal tuning of Fractional-Order Proportional Integral Derivative (FOPID) controller for governing the rotor speed of sensorless Brushless Direct Current (BLDC) motor. The BA is used for developing a novel optimization algorithm which can generate five degrees of freedom parameters namely [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text] and [Formula: see text] of FOPID controller. The desired speed control and robust performance are achieved by using the FOPID closed loop speed controller with the help of BA for optimal tuning. The time domain specifications of a dynamic system for unit step input to FOPID controller for speed response such as peak time ([Formula: see text]), Percentage of overshoot (PO), settling time ([Formula: see text]), rise time ([Formula: see text]) have been evaluated and the steady-state error ([Formula: see text]) of sensorless speed control of BLDC motor has been measured. The simulation results are compared with Artificial Bee Colony (ABC) optimization method and Modified Genetic Algorithm (MGA) for evaluation of transient and steady state time domain characteristics. The proposed BA-based FOPID controller optimization technique is more efficient in improving the transient characteristic performance and reducing steady state error.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3