Mobile Robot Path Planning Method Based on Deep Reinforcement Learning Algorithm

Author:

Meng Haitao1ORCID,Zhang Hengrui1

Affiliation:

1. School Information Engineering, Yancheng Institute of Technology, Yancheng 224051, P. R. China

Abstract

Path planning is an important part of the research field of mobile robots, and it is the premise for mobile robots to complete complex tasks. This paper proposes a reflective reward design method based on potential energy function, and combines the ideas of multi-agent and multi-task learning to form a new training framework. The reflective reward represents the quality of the agent’s current decision relative to the past historical decision sequence, using the second-order information of the historical reward sequence. The policy or value function update of the master agent is then assisted by the reflective agent. The method proposed in this paper can easily extend the existing deep reinforcement learning algorithm based on value function and policy gradient, and then form a new learning method, so that the agent has the reflective characteristics in human learning after making full use of the reward information. It is good at distinguishing the optimal action in the corresponding state. Experiments in pathfinding scenarios verify the effectiveness of the algorithm in sparse reward scenarios. Compared with other algorithms, the deep reinforcement learning algorithm has higher exploration success rate and stability. Experiments in survival scenarios verify the improvement effect of the reward feature enhancement method based on the auxiliary task learning mechanism on the original algorithm. Simulation experiments confirm the effectiveness of the proposed algorithm for solving the path planning problem of mobile robots in dynamic environments and the superiority of deep reinforcement learning algorithms. The simulation results show that the algorithm can accurately avoid unknown obstacles and reach the target point, and the planned path is the shortest and the energy consumed by the robot is the least. This demonstrates the effectiveness of deep reinforcement learning algorithms for local path planning and real-time decision making.

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3