Indirect Adaptive and Interconnection and Damping Assignment Passivity-Based Controller for Constant Power Control in Steady-State of Automotive HID Headlight Electronic Ballast

Author:

Dong P.1,Cheng K. W. E.1,Wang D. H.1

Affiliation:

1. Power Electronics Research Center, Department of Electrical Engineering, The Hong Kong Polytechnic University, Hong Kong

Abstract

A detailed controller design for indirect constant power regulation of high intensity discharge (HID) electronic ballast and the experimental implementation of an adaptive passivity-based constant power (PBC) controller has been extensively studied through simulation and the findings are reported in this paper. An indirect method to regulate the inductor current to ensure the lamp constant output power is proposed in order to overcome the difficulties in measuring the output power of the HID ballast. The controller is derived using passivity theory which guarantees global stability and asymptotic convergence of all state errors. The simulation and controller design are based on an average model using the Euler–Lagrange (EL) equations of the system. As the lamp resistance will inevitably change with ageing, an adaptive method is used to compensate for the lamp performance as the lamp ages. This equips the controller the power to adapt to load variations and there is no need to tune the design parameters values each time manually. Another interconnection and damping assignment (IDA)-PBC method is analyzed and simulation results are provided for comparison. Computer simulation and hardware implementation are carried out to verify the system model and to demonstrate the controller is robust.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3