Priority-Based Task Scheduling in the Cloud Systems Using a Memetic Algorithm

Author:

Keshanchi Bahman1,Navimipour Nima Jafari1

Affiliation:

1. Department of Computer Engineering, Tabriz Branch, Islamic Azad University, Tabriz, Iran

Abstract

Task scheduling is one of the major issues to achieve high performance in distributed systems such as Grid, Peer-to-Peer and cloud environment. Generally, there are two phases in heuristics-based task scheduling algorithms in heterogeneous distributed computing systems (HeDCSs). These phases are task prioritization and processor assigning respectively. Heuristic-based task scheduling algorithms may use different policies to assign priority to subtasks which produce different makespans in a heterogeneous computing system. Thus, a suitable scheduling algorithm is one that can efficiently assign a priority to tasks in order to minimize makespan. Recently, memetic algorithms (MAs) have been used as evolutionary or population-based global search approaches with local search heuristic to optimize NP-complete problems. Recent studies on MAs have discovered their success on a wide variety of real-world problems. Since the task scheduling problem is an NP-complete, in this paper, a new task scheduling algorithm on cloud environment using multiple priority queues and a memetic algorithm (MPQMA) is proposed. The proposed method uses a genetic algorithm (GA) along with hill climbing to assign a priority to each subtask while using a heuristic-based earliest finish time (EFT) approach to search for a solution for the task-to-processor mapping. The basic idea of our approach is using the advantage of MA to increase the convergence speed of the solutions. We implemented the algorithm on Azure Cloud Service by C# language where the experimental results for the set of randomly generated graphs revealed that the proposed MPQMA algorithm outperformed the existing three task scheduling algorithms in terms of makespan with fast convergence to the optimized solution.

Publisher

World Scientific Pub Co Pte Lt

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3