Attention U-Net with Feature Fusion Module for Robust Defect Detection

Author:

Xiong Yu-Jie12ORCID,Gao Yong-Bin1,Wu Hong1,Yao Yao1

Affiliation:

1. School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai 201620, P. R. China

2. Shanghai Key Laboratory of Multidimensional Information Processing, East China Normal University, Shanghai 200241, P. R. China

Abstract

U-Net shows a remarkable performance and makes significant progress for segmentation task in medical images. Despite the outstanding achievements, the common case of defect detection in industrial scenes is still a challenging task, due to the noisy background, unpredictable environment, varying shapes and sizes of the defects. Traditional U-Net may not be suitable for low-quality images with low illumination and corruption, which are often presented in the practical collections in real-world scenes. In this paper, we propose an attention U-Net with feature fusion module for combining multi-scale features to detect the defects in noisy images automatically. Feature fusion module contains convolution kernels of different scales to capture shallow layer features and combine them with the high-dimensional features. Meanwhile, attention gates are used to enhance the robustness of skip connection between the feature maps. The proposed method is evaluated on two datasets. The best precision rate and MIoU of defect detection are 95.6% and 92.5%. The best F-score of concrete crack detection is 95.0%. Experimental results show that the proposed approach achieves promising results in both datasets. It demonstrates that our approach consistently outperforms other U-Net-based approaches for defect detection in low-quality images. Experimental results have shown the possibility of developing a mixture system that can be deployed in many applications, such as remote sensing image analysis, earthquake disaster situation assessment, and so on.

Funder

National Natural Science Foundation of China

Collaborative Innovation Center for Water Treatment Technology and Materials

Shanghai Key Laboratory of Multidimensional Information Processing

Fundamental Research Funds for the Central Universities

Publisher

World Scientific Pub Co Pte Ltd

Subject

Electrical and Electronic Engineering,Hardware and Architecture,Electrical and Electronic Engineering,Hardware and Architecture

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3