Affiliation:
1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
Abstract
As a kind of microchannel layout with good transport performance, tree-like branching microchannel network has been widely used for microfluidic systems, however, the optimal analysis of the tree-like branching microchannel network for electroosmotic flow (EOF) to reach a minimized fluidic resistance still needs a deep study. In this work, the EOF in tree-like branching microchannel network is theoretically and numerically studied. It is found that there is an optimal structure of the tree-like branching network for the EOF to achieve a minimum fluidic resistance under the size constraint of constant total channel volume. This work found that the optimal channel radii of the tree-like network for EOF to reach a minimum fluidic resistance satisfy the relationship of [Formula: see text], where [Formula: see text] is the radius of the parent channel, [Formula: see text] is the radius of the child channels and [Formula: see text] is the total number of child channels. This formula can be regarded as an extended Murray’s law for EOF and is helpful for the optimization design of tree-like branching microchannel network for EOF to reach maximum transport efficiency under the constant applied driven voltage.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Geometry and Topology,Modeling and Simulation
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献