A FRACTAL MODEL OF POWER-LAW FLUID THROUGH CHARGED FIBROUS POROUS MEDIA BY USING THE FRACTIONAL-DERIVATIVE THEORY

Author:

XIAO BOQI1ORCID,LI YUPENG1,LONG GONGBO1

Affiliation:

1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China

Abstract

The study characterizes power-law fluid through charged fibrous porous media with spatial fractional-derivative and fractal geometry. Seepage flow of power-law fluid across fractal fibrous porous media in the presence of electric double layers (EDLs) is investigated based on the capillary bundle model. The acquired velocity distribution equation in a narrow capillary is then transformed into the form of series with appropriate Taylor approximation. After that, an analytical formula for dimensionless permeability is derived based on the generalized Darcy’s law. The effects of diverse parameters, including the fractal dimension of pore area, porosity, fractional order and Zeta potential on dimensionless permeability, are discussed. It can be seen from the results that lower fractional order has an amplification effect on dimensionless permeability with the change in Zeta potential. The results provide some theoretical guidance for revealing the seepage mechanism of a power-law fluid in charged porous media.

Funder

National Natural Science Foundation of China

Hubei Provincial Department of Education

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3