A NEW CLASS OF FRACTAL INTERPOLATION SURFACES BASED ON FUNCTIONAL VALUES

Author:

CHAND A. K. B.1,VIJENDER N.2

Affiliation:

1. Department of Mathematics, Indian Institute of Technology Madras, Chennai – 600036, India

2. Department of Mathematics, VIT University Chennai, Chennai – 600127, India

Abstract

Fractal interpolation is a modern technique for fitting of smooth/non-smooth data. Based on only functional values, we develop two types of [Formula: see text]-rational fractal interpolation surfaces (FISs) on a rectangular grid in the present paper that contain scaling factors in both directions and two types of positive real parameters which are referred as shape parameters. The graphs of these [Formula: see text]-rational FISs are the attractors of suitable rational iterated function systems (IFSs) in [Formula: see text] which use a collection of rational IFSs in the [Formula: see text]-direction and [Formula: see text]-direction and hence these FISs are self-referential in nature. Using upper bounds of the interpolation error of the [Formula: see text]-direction and [Formula: see text]-direction fractal interpolants along the grid lines, we study the convergence results of [Formula: see text]-rational FISs toward the original function. A numerical illustration is provided to explain the visual quality of our rational FISs. An extra feature of these fractal surface schemes is that it allows subsequent interactive alteration of the shape of the surfaces by changing the scaling factors and shape parameters.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fractal Convolution Bessel Sequences on Rectangle;Springer Proceedings in Mathematics & Statistics;2023

2. Cyclic iterated function systems;Journal of Fixed Point Theory and Applications;2020-06-12

3. Approximation by Hidden Variable Fractal Functions: A Sequential Approach;Results in Mathematics;2019-11-07

4. Bernstein fractal approximation and fractal full Müntz theorems;ETNA - Electronic Transactions on Numerical Analysis;2019

5. Shape preserving constrained and monotonic rational quintic fractal interpolation functions;International Journal of Advances in Engineering Sciences and Applied Mathematics;2018-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3