CHAOTIC BEHAVIOR OF BHALEKAR–GEJJI DYNAMICAL SYSTEM UNDER ATANGANA–BALEANU FRACTAL FRACTIONAL OPERATOR

Author:

AHMAD SHABIR1,ULLAH AMAN1,AKGÜL ALI2,ABDELJAWAD THABET345

Affiliation:

1. Department of Mathematics, University of Malakand, Chakdara Dir (L), 18000 Khyber Pakhtunkhwa, Pakistan

2. Art and Science Faculty, Department of Mathematics, Siirt University, TR-56100 Siirt, Turkey

3. Department of Mathematics and General Sciences, Prince Sultan University, P. O. Box 66833, Riyadh 11586, Saudi Arabia

4. Department of Medical Research, China Medical University, 40402 Taichung, Taiwan

5. Department of Computer Science and Information Engineering, Asia University, Taichung, Taiwan

Abstract

In this paper, a new set of differential and integral operators has recently been proposed by Abdon et al. by merging the fractional derivative and the fractal derivative, taking into account nonlocality, memory and fractal effects. These operators have demonstrated the complex behavior of many physical, which generally does not predict in ordinary operators or sometimes in fractional operators also. In this paper, we investigate the proposed model by replacing the classic derivative by fractal–fractional derivatives in which fractional derivative is taken in Atangana–Baleanu Caputo sense to study the complex behavior due to nonlocality, memory and fractal effects. Through Schauder’s fixed point theorem, we establish existence theory to ensure that the model posseses at least one solution. Also, Banach fixed theorem guarantees the uniqueness of solution of the proposed model. By means of nonlinear functional analysis, we prove that the proposed model is Ulam–Hyers stable under the new fractal–fractional derivative. We establish the numerical results of the considered model through Lagrangian piece-wise interpolation. For the different values of fractional order and fractal dimension, we study the chaos behavior of the proposed model via simulation at 2D and 3D phase. We show the effect of fractal dimension on integer and fractional order through simulations.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3