SELF-SIMILARITY, COLLECTIVITY, AND EVOLUTION OF FRACTAL DYNAMICS DURING RETINOID-INDUCED DIFFERENTIATION OF CANCER CELL POPULATION

Author:

WALISZEWSKI PRZEMYSLAW1,MOLSKI MARCIN2,KONARSKI JERZY2

Affiliation:

1. Department of Medicine, Mount Sinai School of Medicine, New York, NY 10021, USA

2. Department of Theoretical Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60-780 Poznan, Poland

Abstract

From the reductionist perspective of molecular biology, proliferation or differentiation of eucaryotic cells is a well-defined temporal, spatial, and cell type-specific sequence of molecular cellular events. Some of those events, such as passing of the restriction point in the cell cycle, are of a stochastic nature. Results of this study indicate that, in spite of the intracellular stochasticity, cancer cells can form collective structures with fractal dimension and self-similarity. A transition from the monolayer culture to the aggregated colony facilitated interconnectedness between P19 cells, altered constitutive expression of randomly chosen retinoid-responsive genes, and increased fractal dimension of the entire population. Retinoid-induced emergence of neuron-like phenotype decreased fractal dimension significantly, slowing down dynamics of gene expression. Since the differentiated P19 cells retained both their cancer phenotype and a number of gene defects, we conclude that the appropriate dynamics of intracellular events is neccessary for the proper course of differentiation. Owing to self-similarity, dynamics of cellular expansion can be measured by a fractal dimension in a single cell or in the entire population.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3