ECG CLASSIFICATION COMPARISON BETWEEN MF-DFA AND MF-DXA

Author:

WANG JIAN1,SHAO WEI2,KIM JUNSEOK3ORCID

Affiliation:

1. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. China

2. School of Economics, Nanjing University of Finance and Economics, Nanjing 210023, P. R. China

3. Department of Mathematics, Korea University, Seoul 02841, Republic of Korea

Abstract

In this paper, automatic electrocardiogram (ECG) recognition and classification algorithms based on multifractal detrended fluctuation analysis (MF-DFA) and multifractal detrended cross-correlation analysis (MF-DXA) were studied. As human heart is a complex, nonlinear, chaotic system, using multifractal analysis to analyze chaotic systems is also a trend. We performed a comparison study of the multifractal nature of the healthy subjects and that of the cardiac dysfunctions ones. To analyze multifractal property quantitatively, the ranges of the Hurst exponent ([Formula: see text]) are computed by MF-DFA and MF-DXA. We found that for MF-DFA, the area of Hurst exponents for atrial premature beat (APB) people was narrower than normal sinus rhythm (NSR) subjects, and for MF-DXA, the difference of [Formula: see text] ([Formula: see text]) of NSR and APB subjects was larger than that of MF-DFA. We then regarded the Hurst exponents ([Formula: see text]) as the input vectors and took them into support vector machine (SVM) for classification. The results showed that [Formula: see text] obtained from MF-DXA led to a higher classification accuracy than that of MF-DFA. This is related to the widening of the difference in the values of Hurst exponents in MF-DFA and MF-DXA. The proposed MF-DFA-SVM and MF-DXA-SVM systems achieved classification accuracy of [Formula: see text] and [Formula: see text], achieved classification sensitivity of [Formula: see text] and [Formula: see text], achieved classification specificity of [Formula: see text] and [Formula: see text], respectively. In general, the Hurst exponents obtained from MF-DXA played an important role in classifying ECG of the healthy and that of the cardiac dysfunctions subjects. Moreover, MF-DXA was more accurate than MF-DFA in the classification of ECG studied in this paper. The research in automatic medical diagnosis and early warning of major diseases has very important practical value.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modelling and Simulation

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3