LONG-TERM CORRELATIONS AND MULTIFRACTALITY OF TRAFFIC FLOW MEASURED BY GIS FOR CONGESTED AND FREE-FLOW ROADS

Author:

DI BAOFENG1,SHI KAI2,ZHANG KAISHAN1,SVIRCHEV LAURENCE3,HU XIAOXI1

Affiliation:

1. Department of Architecture and Environment, Sichuan University, Chengdu, Sichuan 610065, P. R. China

2. College of Biology and Environmental Sciences, Jishou University, Jishou, Hunan 416000, P. R. China

3. Visiting Researcher, Chengdu University of Technology, Chengdu 610059, P. R. China

Abstract

In this paper, a GIS-based method was developed to extract the real-time traffic information (RTTI) from the Google Maps system for city roads. The method can be used to quantify both congested and free-flow traffic conditions. The roadway length was defined as congested length (CL) and free-flow length (FFL). Chengdu, the capital of Sichuan Province in the southwest of China, was chosen as a case study site. The RTTI data were extracted from the Google real-time maps in May 12–17, 2013 and were used to derive the CL and FFL for the study areas. The Multifractal Detrended Fluctuation Analysis (MFDFA) was used to characterize the long-term correlations of CL and FFL time series and their corresponding multifractal properties. Analysis showed that CL and FFL had demonstrated time nonlinearity and long-term correlations and both characteristics differed significantly. A shuffling procedure and a phase randomization procedure were further integrated with multifractal detrending moving average (MFDMA) to identify the major sources of multifractality of these two time series. The results showed that a multifractal process analysis could be used to characterize complex traffic data. Traffic data collected and methods developed in this paper will help better understand the complex traffic systems.

Funder

the Natural Science Foundation of China

the Public Environmental Service Project of the Ministry of Environmental Protection of PRC

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3