STUDY ON COAL FRACTOGRAPHY UNDER DYNAMIC IMPACT LOADING BASED ON MULTIFRACTAL METHOD

Author:

FENG JUNJUN12ORCID,WANG ENYUAN3,HUANG QISONG1,DING HOUCHENG1,MA YANKUN2

Affiliation:

1. Civil Engineering and Architecture, Anhui University of Technology, Maanshan, Anhui 243002, P. R. China

2. Key Laboratory of Safety and High-efficiency Coal Mining, Ministry of Education (Anhui University of Science and Technology), Huainan, Anhui 232001, P. R. China

3. Key Laboratory of Gas and Fire Control for Coal Mines, China University of Mining and Technology, Xuzhou, Jiangsu 221116, P. R. China

Abstract

Coal fractography is a powerful tool for interpreting coal fracture behaviors, which is significant for dealing with failure issues encountered in deep coal mining. However, the accuracy of coal fractography highly depends on the method of quantitatively characterizing coal fracture surfaces. In this study, coal fractography under dynamic impact loading was investigated based on a multifractal method, the multifractal spectrum parameters were proposed to quantitatively describe the coal fracture surfaces. The width of the multifractal spectrum [Formula: see text] characterizes the uniformity of the surface asperity distribution, and the spectrum parameter [Formula: see text]–[Formula: see text] characterizes the proportion of dominant asperities on fracture surface. The coal fractography results indicate that larger loading rate leads to more asperities on the coal fracture surfaces, i.e. rougher fracture surfaces, and the fracture surfaces are dominated by small asperities induced by dynamic impact loading. In addition, significant anisotropy effect was found on the fracture surfaces under dynamic impact loading by the spatial distributions of multifractal spectrum parameter [Formula: see text]. The parameter [Formula: see text] was further utilized to determine the macrocrack direction and microfracture markings on the coal fracture surfaces, the results transpire that the multifractal method is feasible for coal fractographic analysis under dynamic loading conditions.

Funder

Natural Science Foundation of Anhui Province

Open Research Program of Key Laboratory of Safety and High-efficiency Coal Mining

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3