Affiliation:
1. School of Physics, University of Melbourne, Parkville, Victoria 3010, Australia
Abstract
We present here an overview of the history, applications and important properties of a function which we refer to as the Lévy integral. For certain values of its characteristic parameter, the Lévy integral defines the symmetric Lévy stable probability density function. As we discuss however, the Lévy integral has applications to a number of other fields besides probability, including random matrix theory, number theory and asymptotics beyond all orders. We exhibit a direct relationship between the Lévy integral and a number theoretic series which we refer to as the generalized Euler-Jacobi series. The complete asymptotic expansions for all natural values of its parameter are presented, and in particular it is pointed out that the intricate exponentially small series become dominant for certain parameter values.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Geometry and Topology,Modeling and Simulation
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献