ITERATIVE METHOD APPLIED TO THE FRACTIONAL NONLINEAR SYSTEMS ARISING IN THERMOELASTICITY WITH MITTAG-LEFFLER KERNEL

Author:

GAO WEI1,VEERESHA P.2,PRAKASHA D. G.3,SENEL BILGIN4,BASKONUS HACI MEHMET5

Affiliation:

1. School of Information Science and Technology, Yunnan Normal University, Yunnan, P. R. China

2. Department of Mathematics, Karnatak University, Dharwad 580003, India

3. Department of Mathematics, Davangere University, Shivagangothri, Davangere 577007, India

4. Fethiye Faculty of Business Administration, Mugla Sitki Kocman University, Mugla, Turkey

5. Department of Mathematics and Science Education, Harran University, Sanliurfa, Turkey

Abstract

In this paper, we study on the numerical solution of fractional nonlinear system of equations representing the one-dimensional Cauchy problem arising in thermoelasticity. The proposed technique is graceful amalgamations of Laplace transform technique with [Formula: see text]-homotopy analysis scheme and fractional derivative defined with Atangana–Baleanu (AB) operator. The fixed-point hypothesis is considered in order to demonstrate the existence and uniqueness of the obtained solution for the proposed fractional order model. In order to illustrate and validate the efficiency of the future technique, we consider three different cases and analyzed the projected model in terms of fractional order. Moreover, the physical behavior of the obtained solution has been captured in terms of plots for diverse fractional order, and the numerical simulation is demonstrated to ensure the exactness. The obtained results elucidate that the proposed scheme is easy to implement, highly methodical as well as accurate to analyze the behavior of coupled nonlinear differential equations of arbitrary order arisen in the connected areas of science and engineering.

Publisher

World Scientific Pub Co Pte Lt

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3