Affiliation:
1. Department of Mathematics, University of Connecticut, Storrs, CT 06269, USA
Abstract
We show how to calculate the spectrum of the Laplacian operator on fully symmetric, finitely ramified fractals. We consider well-known examples, such as the unit interval and the Sierpiński gasket, and much more complicated ones, such as the hexagasket and a non-post critically finite self-similar fractal. We emphasize the low computational demands of our method. As a conclusion, we give exact formulas for the limiting distribution of eigenvalues (the integrated density of states), which is a purely atomic measure (except in the classical case of the interval), with atoms accumulating to the Julia set of a rational function. This paper is the continuation of the work published by the same authors in Ref. 1.
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Geometry and Topology,Modelling and Simulation
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献