OPTIMIZATION OF HEAT CONDUCTION FOR TREELIKE NETWORK WITH ARBITRARY CROSS-SECTIONAL SHAPE

Author:

LIU FEI1,JING DALEI1ORCID

Affiliation:

1. School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China

Abstract

To minimize the thermal resistance of the fractal treelike heat conduction network and develop an optimization principle applicable for the network with an arbitrary cross-sectional shape, this paper first establishes a theoretical model regarding the total thermal resistance of the symmetric treelike network with arbitrary cross-sectional shapes and then studies the effects of the geometric and structural parameters of the network on its total thermal resistance. The numerical simulations are also performed to analyze the influences of the geometric and structural parameters of symmetric treelike networks with circular, rectangular and triangular cross-sectional shapes on the total thermal resistance. Both the theoretical model and the numerical simulation show that the total thermal resistance of the network with an arbitrary cross-sectional shape first decreases and then increases with increasing cross-sectional area ratio but always increases with increasing length ratio of branches at two successive branching levels when the total branch volume is constant. When the cross-sectional area ratio is equal to the reciprocal of the branching number, the treelike network has the minimum total thermal resistance. This scaling law is applicable for the treelike network with an arbitrary cross-sectional shape to achieve the minimum total thermal resistance.

Funder

Natural Science Foundation of Shanghai

Publisher

World Scientific Pub Co Pte Ltd

Subject

Applied Mathematics,Geometry and Topology,Modeling and Simulation

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3