Affiliation:
1. Institute of Applied System Analysis, Jiangsu University, Zhenjiang 212013, P. R. China
2. Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China
Abstract
The eigenvalues of the transition matrix of a weighted network provide information on its structural properties and also on some relevant dynamical aspects, in particular those related to biased walks. Although various dynamical processes have been investigated in weighted networks, analytical research about eigentime identity on such networks is much less. In this paper, we study analytically the scaling of eigentime identity for weight-dependent walk on small-world networks. Firstly, we map the classical Koch fractal to a network, called Koch network. According to the proposed mapping, we present an iterative algorithm for generating the weighted Koch network. Then, we study the eigenvalues for the transition matrix of the weighted Koch networks for weight-dependent walk. We derive explicit expressions for all eigenvalues and their multiplicities. Afterwards, we apply the obtained eigenvalues to determine the eigentime identity, i.e. the sum of reciprocals of each nonzero eigenvalues of normalized Laplacian matrix for the weighted Koch networks. The highlights of this paper are computational methods as follows. Firstly, we obtain two factors from factorization of the characteristic equation of symmetric transition matrix by means of the operation of the block matrix. From the first factor, we can see that the symmetric transition matrix has at least [Formula: see text] eigenvalues of [Formula: see text]. Then we use the definition of eigenvalues and eigenvectors to calculate the other eigenvalues.
Funder
National Natural Science Foundation of China
Publisher
World Scientific Pub Co Pte Lt
Subject
Applied Mathematics,Geometry and Topology,Modeling and Simulation
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献