Affiliation:
1. School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, P. R. China
Abstract
Tree bifurcation network has always been a hot issue concerning scientists all over the world. However, the research on the heat conduction properties of damaged tree-like bifurcation networks is insufficient, and many issues remain unsolved. Therefore, this paper systematically studies the heat conduction phenomenon of a new damaged tree-like bifurcation network with fractal roughened surfaces (FRS), and derives the equivalent thermal conductivity of damaged network. According to the study, the dimensionless thermal conductivity (DTC) shows a downward trend with an increase in roughness. In addition, it can be seen that an increase in the number of damaged channels leads to a downward trend in the optimal thermal conductivity, but a slow upward trend in the critical diameter. Another interesting phenomenon is that the factors leading to the change in the optimal thermal conductivity do not include the total number of bifurcation levels, bifurcation number or the fractal dimension of length distribution. The model established in this paper does not contain any empirical constants to ensure that each parameter has its physical significance, revealing the heat transfer mechanism of tree-like bifurcation network more profoundly.
Funder
National Natural Science Foundation of China
Hubei Provincial Department of Education
Publisher
World Scientific Pub Co Pte Ltd
Subject
Applied Mathematics,Geometry and Topology,Modeling and Simulation
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献