FEATURE EXTRACTION THROUGH CROSS-PHASE CONGRUENCY FOR FACIAL EXPRESSION ANALYSIS

Author:

BUCIU IOAN1,NAFORNITA IOAN2

Affiliation:

1. Electronics Department, Faculty of Electrical Engineering and Information Technology, University of Oradea, 410087, Universitatii 1, Romania

2. Electronics and Communications Faculty, "Politehnica" University of Timisoara, Bd. Vasile Parvan, no. 2, 300223 Timisoara, Romania

Abstract

Human face analysis has attracted a large number of researchers from various fields, such as computer vision, image processing, neurophysiology or psychology. One of the particular aspects of human face analysis is encompassed by facial expression recognition task. A novel method based on phase congruency for extracting the facial features used in the facial expression classification procedure is developed. Considering a set of image samples comprising humans expressing various expressions, this new approach computes the phase congruency map between the samples. The analysis is performed in the frequency space where the similarity (or dissimilarity) between sample phases is measured to form discriminant features. The experiments were run using samples from two facial expression databases. To assess the method's performance, the technique is compared to the state-of-the art techniques utilized for classifying facial expressions, such as Principal Component Analysis (PCA), Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA), and Gabor jets. The features extracted by the aforementioned techniques are further classified using two classifiers: a distance-based classifier and a Support Vector Machine-based classifier. Experiments reveal superior facial expression recognition performance for the proposed approach with respect to other techniques.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3