Armored Target Detection in Battlefield Environment Based on Top-Down Aggregation Network and Hierarchical Scale Optimization

Author:

Sun Haoze1ORCID,Chang Tianqing1,Zhang Lei1,Yang Guozhen1,Han Bin1,Chen Junwei2

Affiliation:

1. Department of Weapon and Control, Army Academy of Armored Force, Beijing 100072, P. R. China

2. China Astronauts Research and Training Center, Beijing 100094, P. R. China

Abstract

Armored equipment plays a crucial role in the ground battlefield. The fast and accurate detection of enemy armored targets is significant to take the initiative in the battlefield. Comparing to general object detection and vehicle detection, armored target detection in battlefield environment is more challenging due to the long distance of observation and the complicated environment. In this paper, an accurate and robust automatic detection method is proposed to detect armored targets in battlefield environment. Firstly, inspired by Feature Pyramid Network (FPN), we propose a top-down aggregation (TDA) network which enhances shallow feature maps by aggregating semantic information from deeper layers. Then, using the proposed TDA network in a basic Faster R-CNN framework, we explore the further optimization of the approach for armored target detection: for the Region of Interest (RoI) Proposal Network (RPN), we propose a multi-branch RPNs framework to generate proposals that match the scale of armored targets and the specific receptive field of each aggregated layer and design hierarchical loss for the multi-branch RPNs; for RoI Classifier Network (RCN), we apply RoI pooling on the single finest scale feature map and construct a light and fast detection network. To evaluate our method, comparable experiments with state-of-art detection methods were conducted on a challenging dataset of images with armored targets. The experimental results demonstrate the effectiveness of the proposed method in terms of detection accuracy and recall rate.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient cross-modality feature interaction for multispectral armored vehicle detection;Applied Soft Computing;2024-09

2. Instance Segmentation and Classification of Armoured Fighting Vehicles;2022 International Conference on Artificial Intelligence, Big Data, Computing and Data Communication Systems (icABCD);2022-08-04

3. Visual-attention gabor filter based online multi-armored target tracking;Defence Technology;2021-08

4. Visual-simulation region proposal and generative adversarial network based ground military target recognition;Defence Technology;2021-07

5. Targeting TANK-binding kinase 1 (TBK1) in cancer;Expert Opinion on Therapeutic Targets;2020-10-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3