AN SVM-BASED INCREMENTAL LEARNING ALGORITHM FOR USER ADAPTATION OF SKETCH RECOGNITION

Author:

PENG BINBIN1,LIU WENYIN1,LIU YIN1,HUANG GUANGLIN1,SUN ZHENGXING2,JIN XIANGYU3

Affiliation:

1. Department of Computer Science, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, P. R. China

2. State Key Lab for Novel Software Technology, Nanjing University, Nanjing 210095, P. R. China

3. Department of Computer Science, University of Virginia, 151 Engineer's Way, Charlottesville, VA 22904, USA

Abstract

User adaptation is a critical problem in the design of human-computer interaction systems. Many pattern recognition problems, such as handwriting/sketching recognition and speech recognition, are user dependent, since different users' handwritings, drawing styles, and accents are different. Therefore, the classifiers for these problems should provide the functionality of user adaptation so as to let each particular user experience better recognition accuracy according to his input habit/style. However, the user adaptation functionality requires the classifiers to have the incremental learning ability, by which the classifiers can adapt to the user quickly without too much computation cost. In this paper, an SVM-based incremental learning algorithm is presented to solve this problem for sketch recognition. Our algorithm utilizes only the support vectors instead of all the historical samples, and selects some important samples from all newly added samples as training data. The importance of a sample is measured according to its distance to the hyper-plane of the SVM classifier. Theoretical analysis, experimentation, and evaluation of our algorithm in our online graphics recognition system SmartSketchpad, are presented to show the effectiveness of this algorithm. According to our experiments, this algorithm can reduce both the training time and the required storage space for the training dataset to a large extent with very little loss of precision.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient computational model for classification of protein localization images using Extended Threshold Adjacency Statistics and Support Vector Machines;Computer Methods and Programs in Biomedicine;2018-04

2. Quick draw of the original handwriting base on quadratic Bezier curve;International Journal of Wavelets, Multiresolution and Information Processing;2016-07

3. Further development of adaptable automated visual inspection—part I: concept and scheme;The International Journal of Advanced Manufacturing Technology;2015-05-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3