A GPU-Based Automatic Approach for Guide Wire Tracking in Fluoroscopic Sequences

Author:

Chen Ken12,Wang Cheng3,Xie Yaoqin3,Zhou Shoujun3

Affiliation:

1. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Xili University Town, Xueyuan Road No. 1068, Shenzhen, Guangdong, China

2. Shenzhen College of Advanced Technology, University of Chinese Academy of Sciences, China

3. Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, China

Abstract

Guide wire tracking in fluoroscopic images has done a significant task in assisting the physicians during radiology-aided interventions. Many groups have tried to detect the guide wire from the fluoroscopic images based on the image properties. The main challenge is that manual intervention is required during the detection. Other groups try to introduce localizers to track guide wires during intervention, which requires additional hardware equipment, and may intervene with the traditional clinical routines. Machine learning methods are also exploited. Although such methods may provide accurate tracking, they often require large amount of data and training time. In this paper, we propose a GPU-based fast and automatic approach to track guide wires in fluoroscopic sequences. We propose a multi-scale filtering and gradient vector field-based real-time tracking method for guide wire tracking from fluoroscopic images. To improve calculation efficiency and meet real-time application requirement, we propose a GPU-based acceleration scheme, and also a Bayesian filter-like motion tracking method to limit the guide wire tracking to a smaller range to improve calculation efficiency. We test our proposed method on two test data sets of fluoroscopic sequences of 102 frames and 72 frames. We achieve an average guide wire detection rate of 96.7%, a false detection rate of 0.0011% and an error distance measure of 0.83 pixels for the first sequence, and 98.8%, 0.000069% and 0.85 pixels, respectively, for the second sequence. With the proposed acceleration method, we finish calculation for the first sequence in nine seconds, thus, efficiency is enhanced by 100 times with the unaccelerated algorithm.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3