Affiliation:
1. Qatar Robotic Surgery Centre, Qatar Science & Technology Park, Qatar
Abstract
High-level noise and low contrast characteristics in medical images continue to present major bottlenecks in their segmentation despite increased imaging modalities. This paper presents a semi-automatic algorithm that utilizes the noise for enhancing the contrast of low contrast input magnetic resonance images followed by a new graph cut method to reconstruct the surface of left ventricle. The main contribution in this work is a new formulation for preventing the conventional cellular automata method to leak into surrounding regions of similar intensity. Instead of segmenting each slice of a subject sequence individually, we empirically select a few slices, segment them, and reconstruct the left ventricular surface. During the course of surface reconstruction, we use level sets to segment the rest of the slices automatically. We have throughly evaluated the method on both York and MICCAI Grand Challenge workshop databases. The average Dice coefficient (in %) is found to be 92.4 ± 1.3 (value indicates the mean and standard deviation) whereas false positive ratio, false negative ratio, and specificity are found to be 0.019, 7.62 × 10-3, and 0.75, respectively. Average Hausdorff distance between segmented contour and ground truth is determined to be 2.94 mm. The encouraging quantitative and qualitative results reflect the potential of the proposed method.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献