LV Segmentation Using Stochastic Resonance and Evolutionary Cellular Automata

Author:

Dakua Sarada Prasad1

Affiliation:

1. Qatar Robotic Surgery Centre, Qatar Science & Technology Park, Qatar

Abstract

High-level noise and low contrast characteristics in medical images continue to present major bottlenecks in their segmentation despite increased imaging modalities. This paper presents a semi-automatic algorithm that utilizes the noise for enhancing the contrast of low contrast input magnetic resonance images followed by a new graph cut method to reconstruct the surface of left ventricle. The main contribution in this work is a new formulation for preventing the conventional cellular automata method to leak into surrounding regions of similar intensity. Instead of segmenting each slice of a subject sequence individually, we empirically select a few slices, segment them, and reconstruct the left ventricular surface. During the course of surface reconstruction, we use level sets to segment the rest of the slices automatically. We have throughly evaluated the method on both York and MICCAI Grand Challenge workshop databases. The average Dice coefficient (in %) is found to be 92.4 ± 1.3 (value indicates the mean and standard deviation) whereas false positive ratio, false negative ratio, and specificity are found to be 0.019, 7.62 × 10-3, and 0.75, respectively. Average Hausdorff distance between segmented contour and ground truth is determined to be 2.94 mm. The encouraging quantitative and qualitative results reflect the potential of the proposed method.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3