e-NSPFI: Efficient Mining Negative Sequential Pattern from Both Frequent and Infrequent Positive Sequential Patterns

Author:

Gong Yongshun1,Xu Tiantian1,Dong Xiangjun1,Lv Guohua1

Affiliation:

1. School of Information, Qilu University of Technology, Jinan 250353, P. R. China

Abstract

Negative sequential patterns (NSPs), which focus on nonoccurring but interesting behaviors (e.g. missing consumption records), provide a special perspective of analyzing sequential patterns. So far, very few methods have been proposed to solve for NSP mining problem, and these methods only mine NSP from positive sequential patterns (PSPs). However, as many useful negative association rules are mined from infrequent itemsets, many meaningful NSPs can also be found from infrequent positive sequences (IPSs). The challenge of mining NSP from IPS is how to constrain which IPS could be available used during NSP process because, if without constraints, the number of IPS would be too large to be handled. So in this study, we first propose a strategy to constrain which IPS could be available and utilized for mining NSP. Then we give a storage optimization method to hold this IPS information. Finally, an efficient algorithm called Efficient mining Negative Sequential Pattern from both Frequent and Infrequent positive sequential patterns (e-NSPFI) is proposed for mining NSP. The experimental results show that e-NSPFI can efficiently find much more interesting negative patterns than e-NSP.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Detecting Outliers in Non-IID Data: A Systematic Literature Review;IEEE Access;2023

2. Locally Differentially Private Frequent Pattern Mining for High-Dimensional Data in Mobile Smart Services;International Journal of Pattern Recognition and Artificial Intelligence;2022-11-24

3. Explicit and Implicit Pattern Relation Analysis for Discovering Actionable Negative Sequences;IEEE Transactions on Neural Networks and Learning Systems;2022

4. Hybridized optimization oriented fast negative sequential patterns mining;Multimedia Tools and Applications;2021-12-15

5. Multivariate temporal data analysis ‐ a review;WIREs Data Mining and Knowledge Discovery;2021-10-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3