Method of Short-Circuit Fault Diagnosis in Transmission Line Based on Deep Learning

Author:

Li Tong12,Zhao Hai1,Zhou Xiaoming3,Zhu Shidong4ORCID,Yang Zheng4,Yang Hongping4,Liu Wei5,Zhou Zhenliu4

Affiliation:

1. Northeastern University, Shenyang 110819, Liaoning, P. R. China

2. Electric Power Research Institute of State Grid Liaoning, Electric Power Supply Co.,Ltd, Shenyang 110004, Liaoning P. R. China

3. State Grid Liaoning Electric Power Supply Co., Ltd, Shenyang 110004, Liaoning, P. R. China

4. Shenyang Institute of Engineering, Shenyang 110136, Liaoning, P. R. China

5. Shenyang LIGONG University, Shenyang 110159, Liaoning, P. R. China

Abstract

It is important to locate the fault distance and identify the fault types quickly, take effective measures to maintain line stability, and minimize the losses timely when there are short-circuit faults in transmission lines. For this purpose, a method based on deep learning is proposed for short-circuit faults identification in the transmission line. According to the similarity of samples in the reconstruction phase, a minimum neighborhood sample set is selected from the massive samples firstly, and then, the samples are trained using the back propagation algorithm along time in a recurrent neural network (RNN) with long-short term memory (LSTM) units. Compared with existing algorithms, the experimental results show that this algorithm meets the requirements of rapid fault diagnosis in the case of variable parameters, and higher fault type recognition accuracy and lower fault distance error can be obtained.

Funder

Science and Technology Project of State Grid

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3