Affiliation:
1. Faculty of Information Technology, University of Technology, Sydney, Australia
Abstract
Traditionally, data mining is an autonomous data-driven trial-and-error process. Its typical task is to let data tell a story disclosing hidden information, in which domain intelligence may not be necessary in targeting the demonstration of an algorithm. Often knowledge discovered is not generally interesting to business needs. Comparably, real-world applications rely on knowledge for taking effective actions. In retrospect of the evolution of KDD, this paper briefly introduces domain-driven data mining to complement traditional KDD. Domain intelligence is highlighted towards actionable knowledge discovery, which involves aspects such as domain knowledge, people, environment and evaluation. We illustrate it through mining activity patterns in social security data.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
37 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献