Low-Resolution Face Recognition with Single Sample per Person via Domain Adaptation

Author:

Chu Yongjie1ORCID,Zhao Yong2,Ahmad Touqeer3,Zhao Lindu2

Affiliation:

1. School of Management, Nanjing University of Posts and Telecommunications, Nanjing 210046, P. R. China

2. Institute of Systems Engineering, Southeast University, Nanjing 211100, P. R. China

3. Department of Computer Science and Engineering, University of Nevada, Reno 89557, USA

Abstract

Numerous low-resolution (LR) face images are captured by a growing number of surveillance cameras nowadays. In some particular applications, such as suspect identification, it is required to recognize an LR face image captured by the surveillance camera using only one high-resolution (HR) profile face image on the ID card. This leads to LR face recognition with single sample per person (SSPP), which is more challenging than conventional LR face recognition or SSPP face recognition. To address this tough problem, we propose a Boosted Coupled Marginal Fisher Analysis (CMFA) approach, which unites domain adaptation and coupled mappings. An auxiliary database containing multiple HR and LR samples is introduced to explore more discriminative information, and locality preserving domain adaption (LPDA) is designed to realize good domain adaptation between SSPP training set (target domain) and auxiliary database (source domain). We perform LPDA on HR and LR images in both domains, then in the domain adaptation space we apply CMFA to learn the discriminative coupled mappings for classification. The learned coupled mappings embed knowledge from the auxiliary dataset, thus their discriminative ability is superior. We extensively evaluate the proposed method on FERET, LFW and SCface database, the promising results demonstrate its effectiveness on LR face recognition with SSPP.

Funder

National Natural Science Foundation of China

National Key Technology R&D Program of China

Special Fund for Basic Research in Central University

Study Abroad Program for Graduate Studies by China Scholarship Council

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3