Feature Subspace Estimation for Resolving Dimensionality Mismatch in Practical Color-Based Face Recognition Systems

Author:

Choi Jae Young1

Affiliation:

1. Department of Biomedical Engineering, Jungwon University, 85 Munmu-ro, Goesan-eup, Goesan-gun, Chungcheongbuk-do 367-805, Republic of Korea

Abstract

Recently, considerable research efforts have been devoted to effective utilization of facial color information for improved recognition performance. Of all color-based face recognition (FR) methods, the most widely used approach is a color FR method using input-level fusion. In this method, augmented input vectors of the color images are first generated by concatenating different color components (including both luminance and chrominance information) by column order at the input level and feature subspace is then trained with a set of augmented input vectors. However, in practical applications, a testing image could be captured as a grayscale image, rather than as a color image, mainly caused by different, heterogeneous image acquisition environment. A grayscale testing image causes so-called dimensionality mismatch between the trained feature subspace and testing input vector. Disparity in dimensionality negatively impacts the reliable FR performance and even imposes a significant restriction on carrying out FR operations in practical color FR systems. To resolve the dimensionality mismatch, we propose a novel approach to estimate new feature subspace, suitable for recognizing a grayscale testing image. In particular, new feature subspace is estimated from a given feature subspace created using color training images. The effectiveness of proposed solution has been successfully tested on four public face databases (DBs) such as CMU, FERET, XM2VTSDB, and ORL DBs. Extensive and comparative experiments showed that the proposed solution works well for resolving dimensionality mismatch of importance in real-life color FR systems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Cucumber Detection Based on Texture and Color in Greenhouse;International Journal of Pattern Recognition and Artificial Intelligence;2017-05-09

2. A Mismatch Detection Method Based on Affine Transformation for Stereo Light Microscopy Stereo Matching;International Journal of Pattern Recognition and Artificial Intelligence;2017-02-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3