HIDDEN MARKOV MODELS IN TEXT RECOGNITION

Author:

ANIGBOGU J.C.1,BELAÏD A.2

Affiliation:

1. Schlumberger Austin Systems Center 8311 North FM 620 Road P.O. Box 200015, Austin, TX 78720–0015, USA

2. CRIN-CNRS/INRIA Lorraine Bât Loria, B.P. 239 54506 Vandœuvre-lès-Nancy Cedex, France

Abstract

A multi-level multifont character recognition is presented. The system proceeds by first delimiting the context of the characters. As a way of enhancing system performance, typographical information is extracted and used for font identification before actual character recognition is performed. This has the advantage of sure character identification as well as text reproduction in its original form. The font identification is based on decision trees where the characters are automatically arranged differently in confusion classes according to the physical characteristics of fonts. The character recognizers are built around the first and second order hidden Markov models (HMM) as well as Euclidean distance measures. The HMMs use the Viterbi and the Extended Viterbi algorithms to which enhancements were made. Also present is a majority-vote system that polls the other systems for “advice” before deciding on the identity of a character. Among other things, this last system is shown to give better results than each of the other systems applied individually. The system finally uses combinations of stochastic and dictionary verification methods for word recognition and error-correction.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3