MODEL-GUIDED ATTRIBUTED STRING MATCHING BY SPLIT-AND-MERGE FOR SHAPE RECOGNITION

Author:

TSAY YIH-TAY1,TSAI WEN-HSIANG2

Affiliation:

1. Institute of Computer Science and Information Engineering National Chiao Tung University Hsinchu, Taiwan 30050, R.O.C.

2. Department of Computer and Information Science National Chiao Tung University Hsinchu, Taiwan 30050, R.O.C.

Abstract

Due to noise and distortion, segmentation uncertainty is a key problem in structural pattern analysis. In this paper we propose the use of the split operation for shape recognition by attributed string matching. After illustrating the disadvantage of attributed string matching using the merge operation, the split operation is proposed. Under the guidance of the model shape, an input shape can be reapproximated, using the split operation, into a new attributed string representation. By combining the split and the merge operations for shape matching it is unnecessary to apply any type of edit operation to a model shape. This makes the distance between the input shape and the model shape more meaningful and stable, and improves recognition results. An algorithm for attributed string matching by split-and-merge is proposed. To eliminate the effect of the numbers of primitives in the model shape on the shape distance, shape recognition based on a similarity measure is also proposed. Good experimental results prove the feasibility of the proposed approach for general shape recognition.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. On-line structure-based handwritten Chinese phonetic symbol recognition;Journal of Information and Optimization Sciences;2016-03-03

2. A Method for Fuzzy String Matching;2016

3. A local evaluation of vectorized documents by means of polygon assignments and matching;International Journal on Document Analysis and Recognition (IJDAR);2011-01-29

4. Symbol Spotting Through Prototype-based Search;Symbol Spotting in Digital Libraries;2010

5. State-of-the-Art in Symbol Spotting;Symbol Spotting in Digital Libraries;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3