Affiliation:
1. Electronics and Electrical Communication Engineering Department, Indian Institute of Technology, Kharagpur-721 302, India
Abstract
Stereo matching is the central problem of stereovision paradigm. Area-based techniques provide the dense disparity maps and hence they are preferred for stereo correspondence. Normalized cross correlation (NCC), sum of squared differences (SSD) and sum of absolute differences (SAD) are the linear correlation measures generally used in the area-based techniques for stereo matching. In this paper, similarity measure for stereo matching based on fuzzy relations is used to establish the correspondence in the presence of intensity variations in stereo images. The strength of relationship of fuzzified data of two windows in the left image and the right image of stereo image pair is determined by considering the appropriate fuzzy aggregation operators. However, these measures fail to establish correspondence of the pixels in the stereo images in the presence of occluded pixels in the corresponding windows. Another stereo matching algorithm based on fuzzy relations of fuzzy data is used for stereo matching in such regions of images. This algorithm is based on weighted normalized cross correlation (WNCC) of the intensity data in the left and the right windows of stereo image pair. The properties of the similarity measures used in these algorithms are also discussed. Experiments with various real stereo images prove the superiority of these algorithms over normalized cross correlation (NCC) under nonideal conditions.
Publisher
World Scientific Pub Co Pte Lt
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Software
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献