INTELLIGENT UNDERSTANDING OF USER INTERACTION IN IMAGE SEGMENTATION

Author:

SPINA THIAGO V.1,DE MIRANDA PAULO A. V.2,FALCÃO ALEXANDRE X.1

Affiliation:

1. Institute of Computing–University of Campinas, (UNICAMP), Campinas, SP, Brazil

2. Institute of Mathematics and Statistics, University of São Paulo (USP), São Paulo, SP, Brazil

Abstract

We have developed interactive tools for graph-based segmentation of natural images, in which the user guides object delineation by drawing strokes (markers) inside and outside the object. A suitable arc-weight estimation is paramount to minimize user time and maximize segmentation accuracy in these tools. However, it depends on discriminative image properties for object and background. These properties can be obtained from some marker pixels, but their identification is a hard problem during delineation. Careless arc-weight re-estimation reduces user control and drops performance, while interactive arc-weight estimation in a step before interactive object extraction is the best option so far, albeit it is not intuitive for nonexpert users. We present an effective solution using the unified framework of the image foresting transform (IFT) with three operators: clustering for interpreting user interaction and determining when and where arc weights need to be re-estimated; fuzzy classification for arc-weight estimation; and marker competition based on optimum connectivity for object extraction. For validation, we compared the proposed approach with another interactive IFT-based method, which computes arc weights before extraction. Evaluation involved multiple users (experts and nonexperts), a dataset with several natural images, and measurements to quantify accuracy, precision, efficiency (user time and computation time), and user control, being some of them novel measurements, proposed in this work.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semi-automatic data annotation guided by feature space projection;Pattern Recognition;2021-01

2. Semi-supervised Deep Learning Based on Label Propagation in a 2D Embedded Space;Progress in Pattern Recognition, Image Analysis, Computer Vision, and Applications;2021

3. Grabber: A tool to improve convergence in interactive image segmentation;Pattern Recognition Letters;2020-12

4. Feature Learning from Image Markers for Object Delineation;2020 33rd SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI);2020-11

5. The Role of Optimum Connectivity in Image Segmentation: Can the Algorithm Learn Object Information During the Process?;Discrete Geometry for Computer Imagery;2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3