EXPERIMENTAL COMPARISON OF THE EFFECT OF ORDER IN RECURRENT NEURAL NETWORKS

Author:

MILLER CLIFFORD B.1,GILES C. LEE2

Affiliation:

1. NEC Research Institute, 4 Independence Way, Princeton, NJ 08540, USA

2. Also: Institute for Advanced Computer Studies, University of Maryland, College Park, MD 20742, USA

Abstract

There has been much interest in increasing the computational power of neural networks. In addition there has been much interest in “designing” neural networks better suited to particular problems. Increasing the “order” of the connectivity of a neural network permits both. Though order has played a significant role in feedforward neural networks, its role in dynamically driven recurrent networks is still being understood. This work explores the effect of order in learning grammars. We present an experimental comparison of first order and second order recurrent neural networks, as applied to the task of grammatical inference. We show that for the small grammars studied these two neural net architectures have comparable learning and generalization power, and that both are reasonably capable of extracting the correct finite state automata for the language in question. However, for a larger randomly-generated ten-state grammar, second order networks significantly outperformed the first order networks, both in convergence time and generalization capability. We show that these networks learn faster the more neurons they have (our experiments used up to 10 hidden neurons), but that the solutions found by smaller networks are usually of better quality (in terms of generalization performance after training). Second order nets have the advantage that they converge more quickly to a solution and can find it more reliably than first order nets, but that the second order solutions tend to be of poorer quality than those of the first order if both architectures are trained to the same error tolerance. Despite this, second order nets can more successfully extract finite state machines using heuristic clustering techniques applied to the internal state representations. We speculate that this may be due to restrictions on the ability of first order architecture to fully make use of its internal state representation power and that this may have implications for the performance of the two architectures when scaled up to larger problems.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A tensor framework for learning in structured domains;Neurocomputing;2022-01

2. LSTM Based Model For Apple Inc Stock Price Forecasting;2021 2nd International Conference on Computer Science and Management Technology (ICCSMT);2021-11

3. Overcoming the Vanishing Gradient Problem during Learning Recurrent Neural Nets (RNN);Asian Journal of Applied Science and Engineering;2020-12-31

4. LSTM, GRU, Highway and a Bit of Attention: An Empirical Overview for Language Modeling in Speech Recognition;Interspeech 2016;2016-09-08

5. The Kernel Adaptive Autoregressive-Moving-Average Algorithm;IEEE Transactions on Neural Networks and Learning Systems;2016-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3