Novel Leakage Detection Method by Improved Adaptive Filtering and Pattern Recognition based on Acoustic Waves

Author:

Chi Zhaozhao12,Jiang Juncheng123ORCID,Diao Xu12,Chen Qiang12,Ni Lei12,Wang Zhirong12,Shen Guodong12

Affiliation:

1. College of Safety Science and Engineering, Nanjing Tech University, Nanjing 210009, Jiangsu, P. R. China

2. Jiangsu Key Laboratory of Hazardous Chemical Safety and Control, Nanjing 210009, Jiangsu, P. R. China

3. Changzhou University, Changzhou 213164, Jiangsu, P. R. China

Abstract

Pipeline leakages have plagued pipeline transportation for long time. Therefore, accurately extracting the features of leak signal in the presence of noise, and prompt identification of leak states and leak sizes is essential when leakage occurs. A novel leakage detection method based on the improved adaptive filter, whose parameters were optimized by the particle swarm optimization (PSO), was formulated and applied. The PSO-adaptive filter proved to be an effective signal processing method in contrast with variational mode decomposition (VMD). Its efficiency stems from the fact that the adaptive filter employs the noise collected from the detection environment. Therefore, the filter can adjust its parameters according to the changing situation. What is more, the application of PSO is conducive to automatically set suitable parameters for adaptive filter. After signal denoising, principal component analysis (PCA) was used for feature dimension reduction and selecting optimal features. The features after PCA proved to be more helpful in pattern recognition than the features without PCA. Furthermore, the relationship between the recognition results of leakage sizes and the measurement distance of the sensor was studied. Experimental results show that the method used in this paper can identify the leakage states with the accuracy of 100%. The identification result of leakage size reaches an accuracy of 86.75% under the influence of the measurement distance.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Key Technologies Research and Development Program

Graduate Research and Innovation Projects of Jiangsu Province

Publisher

World Scientific Pub Co Pte Ltd

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3