BACKGROUND STRUCTURE IN DOCUMENT IMAGES

Author:

BAIRD HENRY S.1

Affiliation:

1. AT&T Bell Laboratories, 600 Mountain Avenue, Room 2C-322, Murray Hill, New Jersey 07974–0636, USA

Abstract

A method for analyzing the structure of the white background in document images is described, along with applications to the problem of isolating blocks of machine-printed text. The approach is based on computational-geometry algorithms for off-line enumeration of maximal white rectangles and on-line rectangle unification. These support a fast, simple, and general heuristic for geometric layout segmentation, in which white space is covered greedily by rectangles until all text blocks are isolated. Design of the heuristic can be substantially automated by an analysis of the empirical statistical distribution of properties of covering rectangles: for example, the stopping rule can be chosen by Rosenblatt’s perceptron training algorithm. Experimental trials show good behavior on the large and useful class of textual Manhattan layouts. On complex layouts from English-language technical journals of many publishers, the method finds good segmentations in a uniform and nearly parameter-free manner. On a variety of non-Latin texts, some with vertical text lines, the method finds good segmentations without prior knowledge of page and text-line orientation.

Publisher

World Scientific Pub Co Pte Lt

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Software

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Overview of Data Extraction From Invoices;IEEE Access;2024

2. Making scanned Arabic documents machine accessible using an ensemble of SVM classifiers;International Journal on Document Analysis and Recognition (IJDAR);2018-04-02

3. Layout Error Correction Using Deep Neural Networks;2018 13th IAPR International Workshop on Document Analysis Systems (DAS);2018-04

4. A review of algorithms for text detection in images and videos;Computer Optics;2017-01-01

5. Document page segmentation using neuro-fuzzy approach;Applied Soft Computing;2008-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3